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Huge Growth of Multimodal Video Data

500+ hours of video are uploaded to
YouTube every minute
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are watched every day in youtube
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Huge Growth of Multimodal Video Data
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Temporal 7

Video Model Compression and Acceleration

TSM [Lin et al, 2019]

Channel C

temporal shift

:I X3D [Feichtenhofer, 2020]

Input frames 5 7d

AVBert [Lee et al, 2021]
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- Most methods rely on one-size-fits-all networks that require the same fixed set
~ of features to be extracted for all inputs, no matter their complexity '




This talk: Dynamic (Adaptive) Neural Networks for Efficient Inference

= Networks models that are dynamically reconfigured depending on the input

BlockDrop AdaMML

Multimodal

= Conditional Computation [Bengio et al, 2013/2016]



BlockDrop: Dynamic Inference Paths in Residual Networks
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Do we really need to run 100+ layers / residual blocks of a neural
network if we have an “easy” input image?

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

drop
drop
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Dog

“Dropping some blocks during testing
~ doesn’t hurt performance much”

(Veit et al., NIPS 16)

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

How to determine which blocks to drop depending on the input image?

{ o o Q. o o o Q o
— o eHeHe o o eLe Dog
{ © © © © © © © ©
{ Q. Q. o
o o o Dog
© © ©

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

Our Idea: BlockDrop

Predict which blocks to drop conditioned on the input
Image, in one shot, without compromising accuracy

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

Policy Network Training through Reinforcement Learning

1
|

i

\‘; Expected gradient

mard <

Predictions

L
'\
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

S

———— b
~

o[855 ) ) 5 5 5 o)
> 121z drop > > > > > > drop :
= C C C C C = = = |
(@] (@] [} (@] [e] [e] [e] (@] O |
L O (@] O O (@] O O O (@] :
|
|
Residual Block Residual Block Residual Block Residual Block Residual Block



77.0
76.5
76.0

e 75.5

75.0

74.5

74.0

2 73.5
73.0

72.5

p-1 Accuracy (%

72.0

BlockDrop: Dynamic Inference Paths in Residual Networks

L] ===+ BlockDrop
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=e+ | CCL [12]
===+ PFEC [32]
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==+ ACT [14]
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Results on ImageNet:

20% - 36% computational
savings (FLOPs)

Complementary to other
model compression
techniques

[Wu & Nagarajan et al, CVPR 2018]
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See Also:

SpotTune, CVPR 2019
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A " v Transfer pre-trained

o
. parameters to new task

Which layers to freeze and which layers to fine-tune?
(perinstance)

iR

Freeze Freeze Fine-tune Fine-tune

s 8000

Fine-tune Freeze Fine-tune Freeze

Adashare, NeurlPS 2020

[ Task 1-Specific

Task 2-Specific -Shared K!Skipped ]




This talk: Dynamic (Adaptive) Neural Networks for Efficient Inference

= Networks models that are dynamically reconfigured depending on the input

BlockDrop

AdaMML

Multimodal

= Conditional Computation [Bengio et al, 2013/2016]



Videos are redundant.
Do we need all frames of a video to make a prediction?

Different video segments have different levels of redundancy

[Meng et al, ECCV 2020]



How about Spatial Resolution?

" Most methods process all video frames at the same resolution

High-Resolution mmm) More Accuracy, Less Efficiency

Low-Resolution mmmp Less Accuracy, More Efficiency

[Meng et al, ECCV 2020]



AR-Net: Adaptive Frame Resolution for Efficient Action Recognition

Our Idea: AR-Net

Adaptively select the right data, at the right level of detall
~ (resolution), to make video recognition more efficient

[Meng et al, ECCV 2020]



AR-Net: Adaptive Frame Resolution for Efficient Action Recognition

Our Idea: AR-Net

Making a sandwich

[Meng et al, ECCV 2020]



AR-Net: Adaptive Frame Resolution for Efficient Action Recognition

Policy Network
Hidden
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[Meng et al, ECCV 2020]



AR-Net: Adaptive Frame Resolution for Efficient Action Recognition
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[Meng et al, ECCV 2020]



AR-Net: Adaptive Frame Resolution for Efficient Action Recognition

Qualitative Results

4 Cleaning Floor
(easy)

Fireworks
(easy)

[Meng et al, ECCV 2020]



AR-Net: Adaptive Frame Resolution for Efficient Action Recognition

Qualitative Results

Making Salad
1 (Medium)

Assembling a
computer (Hard)

[Meng et al, ECCV 2020]



<Q See Also:

VA-RED?2, ICLR 2021 AdaFuse, ICLR 2021
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This talk: Dynamic (Adaptive) Neural Networks for Efficient Inference

= Networks models that are dynamically reconfigured depending on the input

BlockDrop

AdaMML

Multimodal

Image Video

= Conditional Computation [Bengio et al, 2013/2016]



Observation: For a given video segment, not all modalities may be
required or relevant for recognizing a particular action class

Action: Running

(Commentator talking about the weather)



Some modalities require more computation than others

Audio (efficient)

e

Optical Flow

(expensive)

/




AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Our ldea: AdaMML

Predict which modality to use for each video segment
(conditioned on the input) so as to maximize action
recognition accuracy and efficiency

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Our ldea: AdaMML

Segment1l  Segment 2 Segment N

RGB

Audio

Selected : RGB . RGB : :

Modaity l Skip l RGB l A lAudlo l RGB l e lAudlo l S}klp
Y

Mowing the Lawn

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Approach

Policy Network Recognition
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[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Policy Network

" RGB difference as an efficient proxy for optical flow

" [nput Data is subsampled (both spatially and temporally)
" Lightweight Backbone (MobileNetV?2)

" Gumbel Softmax Sampling

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Loss Function

K
E(V.y)~Dyrain [—y log(P(V;0)) + Z ,\kck} Cross-Entropy + Efficiency Loss
k=1

C

U
Ck:{ (| k|0)2 if correct
Y otherwise

/ Percentage of used video segments per modality K

Penalty for misclassification

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

RGB + Audio (Kinetics-Sounds)

Dataset Kinetics-Sounds
Selection Rate (%)
Method Acc. (%) | RGB Audio GFLOPs
RGB 82.85 100 — 141.36
Audio 65.49 — 100 3.82
Weighted Fusion 87.86 100 100 145.17 |
[ AdaMML 88.17 | 46.47 | 94.15 | 76.45 (-47.3%) ]

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

RGB+Audio+Flow (Kinetics-Sounds)

Selection Rate (%)

Method Acc. (%) | RGB | Flow | Audio GFLOPs
RGB 82.85 100 — — 141.36
Flow 75.73 — 100 — 163.39
Audio 65.49 — — 100 3.82
Weighted Fusion 88.25 100 100 100 308.56
AdaMML-Flow 88.54 56.13 | 20.31 | 97.49 | 132.94 (-56.9%)

AdaMML-RGBDiff

26.82

141.97 (-54.0%)

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Qualitative Results

Cheerleading

Audio

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Qualitative Results

Playing Piano

Audio

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Qualitative Results

Action: Doing Fencing

rencing World champlonships 1010 cing World champlonships 2010

RGB

Audio

[Panda and Chen, Arxiv 2021]



AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Qualitative Results

Chopping Wood

[Panda and Chen, Arxiv 2021]



Other Related Projects
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Grounding Spoken Words in Video (without supervision)

Spoken Moments, CVPR 2021
Multimodal Clustering Networks,

Arxiv 2021

Contrastive loss  Clustering loss
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AVLNet, Interspeech 2021

Dim 2758: Audio: oil (0.72) Visual: pan (0.30)
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as it sizzles what's  I'm going to put oil  some oil easy you garage so memorable
in my opinion oil

Fry the chicken 1 Heat oil in a pan
in the oil and deep fry the
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Grounding Text in Images (without supervision)

Separating skills and concepts,

Grounding by separation, Arxiv 2021 CVPR 2021
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Summary

Adaptive (dynamic) neural networks for efficient inference

» Blockdrop: dynamic selection of layers to execute for efficient image
classification

= AR-Net: dynamic selection of frame resolution for efficient video
recognition

= AdaMML: dynamic selection of modalities for efficient multimodal
video understanding
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